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Summary of Topics

1. Course Prerequisites and Interactive Examples
2. Array Jobs

3. Parallel and MPI Workflows

4. Managing Python Environments

5. Workflow Optimization Exercises
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Prerequisites

• Familiarity with command line shells

• Connecting to a system via SSH

• Editing files in terminal

• Experience with scheduling jobs on an HPC system
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Array Jobs

• A better way to handle hundreds to thousands of similar jobs

• Submit one job script that walks over a range

• Can be used to vary input parameters or file names for software

• Each sub-job will run independently

• Order of completion is not guaranteed by default
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Array Jobs – Examples

• #PBS –J 0-99:3

•

• PBS provides $PBS_ARRAY_INDEX to reference the ID during execution

• Can be used to walk over a directory of input files

• Example script is provided in /scratch/tr-summer-2021/HPC/arrayjobs.sh
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Parallel and MPI workflows

• Many scientific software packages support parallel processing

• Allows utilization of multiple core or multiple nodes to speed execution

• Optimizing the number of resources is vital

• Schedulers only consider resources requested not actual utilization
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Parallel and MPI workflows – OpenMP vs MPI

• OpenMP uses threaded parallelization or ‘local parallelization’

•

•

•

• MPI distributes work via message passing to MPI threads

•

•
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Parallel and MPI workflows – Benchmarking and 
Rightsizing

• Important to fully test your parallel code to make best use of resources

• How software divides the work can lead to various ceilings of parallelism

• Test your software with multiple settings to optimize your future runs

• A better understanding will lead to faster queue times and quicker turnaround
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Managing Python Environments

• Python is great for rapid prototyping and has a large variety of packages for scientific computing.

• However, there are many versions of Python and associated packages, which makes keeping 

track of versions and dependencies difficult.

• Python virtual environments are a way to manage this complexity.
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Managing Python Environments

• Anaconda is not well suited for clusters:

•

•

•

• Hence it is recommended to use a Python virtual environment instead.
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Managing Python Environments - Virtualenv

• Virtualenv is a tool used to create a Python virtual environment.

• Creates a self-contained Python environment with all dependencies that packages can be 

installed into.
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Managing Python Environments - PIP

• PIP is the package installer for Python.

• It can be used to install packages from the Python Package Index (PyPI) and other indexes.

• Can be used with virtual environments.

• https://pip.pypa.io/en/stable/cli/

https://pip.pypa.io/en/stable/cli/


Exercises – create a virtual environment



Exercises – activate the virtual environment



Exercises – upgrade PIP



Exercises – install numpy



Exercises – uninstall numpy



Exercises – install a specific version of numpy



Exercises – freeze a list of requirements 



Exercises – build and install requirements 



Exercises – show package details



Exercises – install from Git repo

• module load git

• pip install 
git+https://github.com/django/django.git@527482c5135a21e92d86a
a968120cf66a1d6dff3



Exercises – install from Git repo



arc.ubc.ca

Workflow Optimization Exercises

• Files for exercises are in /scratch/tr-summer-2021/HPC/workflow

• Job scripts will write out to /scratch/tr-summer-2021/HPC/output/JOB_ID_output.txt

• Find your previous jobs with `qstat –xu USERNAME’ and full job info with `qstat –xf JOB_ID’
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Workflow Optimization Exercises 
– Benchmarking Results

• Utilizing the LAMMPS script benchmarking_exercise.sh determine the optimal number of cores 

and nodes to run a large number of similar jobs in the future.

• Options are 8 CPUS, 16 CPUs, 32CPUs, and 2 nodes with 32CPUs.

• To save on system load we will present the 16, 32 and multi-node examples and give job ids to 

inspect the total load.

• Use `qstat –xf JOB_ID’ after completion to look at actual runtime.

• Consider what point adding more processing power provides minimal speedup
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Workflow Optimization Exercises 
– Storage Optimization

• Utilizing the script [[insert script name.sh]] edit it to point the output to $PBS_TMPDIR and copy 

the file JOB_ID_final.txt to /scratch/tr-summer-2021/HPC/output/ before the job script exits.

• Due to the local nature of the $TMPDIR writes of files are much better performing for frequent 

file output.

• Once your job is completed move the file from /scratch/tr-summer-2021/HPC/output/ to 

/arc/project/tr-summer-2021/HPC/StorageOp

• Final results should not be stored on /scratch and should instead be moved to your project 

space
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Workflow Optimization Exercises 
– ??
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