
arc.ubc.ca

Intermediate HPC

Presented by: Jacob Boschee and Venkat Mahadevan

arc.ubc.ca

Summary of Topics

1. Course Prerequisites and Interactive Examples
2. Array Jobs

3. Parallel and MPI Workflows

4. Managing Python Environments

5. Workflow Optimization Exercises

arc.ubc.ca

Prerequisites

• Familiarity with command line shells

• Connecting to a system via SSH

• Editing files in terminal

• Experience with scheduling jobs on an HPC system

arc.ubc.ca

Array Jobs

• A better way to handle hundreds to thousands of similar jobs

• Submit one job script that walks over a range

• Can be used to vary input parameters or file names for software

• Each sub-job will run independently

• Order of completion is not guaranteed by default

arc.ubc.ca

Array Jobs – Examples

• #PBS –J 0-99:3

•

• PBS provides $PBS_ARRAY_INDEX to reference the ID during execution

• Can be used to walk over a directory of input files

• Example script is provided in /scratch/tr-summer-2021/HPC/arrayjobs.sh

arc.ubc.ca

Parallel and MPI workflows

• Many scientific software packages support parallel processing

• Allows utilization of multiple core or multiple nodes to speed execution

• Optimizing the number of resources is vital

• Schedulers only consider resources requested not actual utilization

arc.ubc.ca

Parallel and MPI workflows – OpenMP vs MPI

• OpenMP uses threaded parallelization or ‘local parallelization’

•

•

•

• MPI distributes work via message passing to MPI threads

•

•

arc.ubc.ca

Parallel and MPI workflows – Benchmarking and
Rightsizing

• Important to fully test your parallel code to make best use of resources

• How software divides the work can lead to various ceilings of parallelism

• Test your software with multiple settings to optimize your future runs

• A better understanding will lead to faster queue times and quicker turnaround

arc.ubc.ca

Managing Python Environments

• Python is great for rapid prototyping and has a large variety of packages for scientific computing.

• However, there are many versions of Python and associated packages, which makes keeping

track of versions and dependencies difficult.

• Python virtual environments are a way to manage this complexity.

arc.ubc.ca

Managing Python Environments

• Anaconda is not well suited for clusters:

•

•

•

• Hence it is recommended to use a Python virtual environment instead.

arc.ubc.ca

Managing Python Environments - Virtualenv

• Virtualenv is a tool used to create a Python virtual environment.

• Creates a self-contained Python environment with all dependencies that packages can be

installed into.

arc.ubc.ca

Managing Python Environments - PIP

• PIP is the package installer for Python.

• It can be used to install packages from the Python Package Index (PyPI) and other indexes.

• Can be used with virtual environments.

• https://pip.pypa.io/en/stable/cli/

https://pip.pypa.io/en/stable/cli/

Exercises – create a virtual environment

Exercises – activate the virtual environment

Exercises – upgrade PIP

Exercises – install numpy

Exercises – uninstall numpy

Exercises – install a specific version of numpy

Exercises – freeze a list of requirements

Exercises – build and install requirements

Exercises – show package details

Exercises – install from Git repo

• module load git

• pip install
git+https://github.com/django/django.git@527482c5135a21e92d86a
a968120cf66a1d6dff3

Exercises – install from Git repo

arc.ubc.ca

Workflow Optimization Exercises

• Files for exercises are in /scratch/tr-summer-2021/HPC/workflow

• Job scripts will write out to /scratch/tr-summer-2021/HPC/output/JOB_ID_output.txt

• Find your previous jobs with `qstat –xu USERNAME’ and full job info with `qstat –xf JOB_ID’

arc.ubc.ca

Workflow Optimization Exercises
– Benchmarking Results

• Utilizing the LAMMPS script benchmarking_exercise.sh determine the optimal number of cores

and nodes to run a large number of similar jobs in the future.

• Options are 8 CPUS, 16 CPUs, 32CPUs, and 2 nodes with 32CPUs.

• To save on system load we will present the 16, 32 and multi-node examples and give job ids to

inspect the total load.

• Use `qstat –xf JOB_ID’ after completion to look at actual runtime.

• Consider what point adding more processing power provides minimal speedup

arc.ubc.ca

Workflow Optimization Exercises
– Storage Optimization

• Utilizing the script [[insert script name.sh]] edit it to point the output to $PBS_TMPDIR and copy

the file JOB_ID_final.txt to /scratch/tr-summer-2021/HPC/output/ before the job script exits.

• Due to the local nature of the $TMPDIR writes of files are much better performing for frequent

file output.

• Once your job is completed move the file from /scratch/tr-summer-2021/HPC/output/ to

/arc/project/tr-summer-2021/HPC/StorageOp

• Final results should not be stored on /scratch and should instead be moved to your project

space

arc.ubc.ca

Workflow Optimization Exercises
– ??

arc.ubc.ca

arc.ubc.ca

email: arc.info@ubc.ca

